DESCRIPTION OF SURFACE PHENOMENA IN
ELASTICALLY POLARIZED SOLIDS

Yu. Z. Povstenko UDC 539.3

Spatial orientation of point defects can occur during surface formation in a solid. The average tensor of
elastic dipoles [1], on whose orientation the dia- and paraelasticity are based [1, 2], can be viewed from the
point of view of the mechanics of a continuous medium as a tensor state parameter, i.e., an analog of the us-
ual scalar concentration of dissolved substance., The idea that scalar quantities (concentration and the chem-
ical potential) are inadequate for describing deformation of solids in the diffusion theory, but corresponding
tensors must be introduced, is stated in [3, 4] (see also [5, 6]). As state parameters of a nonideal solid solu-
tion, the temperature T, the entropy s, stress tensor o, deformation e, chemical potential ¢, and concentra-
tion ¢, for which a coupled system of equations is obtained in [3, 4}, are chosen,

The purpose of this paper is to construct a two-dimensional analog of the system of equations indicated
taking into account the specifics of surface phenomena, modeling the thin near-surface layer by a surface hav-
ing intrinsic state parameters,

1. Balance Equations., For the material volume illustrated in the figure, the following equations are
valid: conservation of mass
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where p is the density; P = pe, defect density tensor; v, velocity; F, vector of mass forces; oy and oy, three-
dimensional stress tensors; o, a two-dimensional stress tensor on the surface; E = u + (1/2)v2; u, internal
energy density; g, heat flux vector; s, 71, J (s)’ density, formation, and flux of entropy; t, time; 1, external
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normal to the surface; N, outer normal to the contour I, tangent to the surface Z (see Fig, 1). The indices 1

and 2 indicate quantities relating to the two media in contact; quantities without indices are characteristics of
the surface.

The transition in Eqgs. (1.1)-(1.5) to the limit with the volume V contracted to a point on the surface Z
{7, 8] assuming that the velocities on the surface are equal leads to the local equations
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where J = WP is the rank 3 defect flux tensor; w is the diffusion velocity; Vy is the surface nabla operator.
The conservation of internal energy follows from Egs. (1.8) and (1.9)
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2. Condition of Local Equilibrium. Following [3, 4] and using as a basis the principle of local autonomy
of the surface phase [9], we shall write the condition for local equilibrium in the form-
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The equations of state are defined by the equation
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In the theory of surface phenomena, the densities calculated per unit surface area are usually used:
u* = pu, w* = P, s* = ps. Then Egs. (2.1)~(2.4) are rewritten in the form
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where a s the metric tensor on the surface Z,

The equations of state for the stress tensor (2.6) and (2.8), coupling the surface stress tensor with the
surface density of the grand potential, have the form of the Herring equation [10] and, in particular, emphasize
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the important role of the quantity w* in studying surface phenomena in solid solutions.

We shall expand the density of the grand potential w* in a series with respect to the natural variables
in the vicinity of the equilibrium state (indicated by the index 0), retaining quadratic terms:
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Differentiation of expression (2.9) leads to the specific form of the equations of state
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where ® = T—Tj; & = ¢ = ¢y A, 4, K are the two~dimensional coefficients of elasticity; C is the heat
capacity; 8 is the coefficient of thermal expansion; vy is the coefficient of diffusive expansion; D and v are
coefficients characterizing the mass content; £ and £ describe the cross effects between diffusion deforma-
tion and heat conduction, respectively,

In the expansion (2.9) and in equations of state (2.10), for the surface stress tensor ¢, a constant term
wa" , which is important in studying surface phenomena, is included. The need to include terms of this kind was
emphasized in {11].

3. Formation of Entropy and the System of Equations. Simultaneous analysis [12] of the conditions of
local equilibrium and the conservation equations specifies the expression for the flow and generation of en~
tropy (compare with {13]):
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The phenomenological equations, including Curie's principle and symmetry of phenomenological coef-
ficients Ly = Ly Myy = My, are written in the form
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Using Egs. (1.7) and (1.11), after linearizing and neglecting the coupling effects in the equations of the
process (3.1), we obtain a system of equations consisting of the following equations of motion (1.8), generaliz-
ing the well-known Laplace equation [14] for liquids, relating the jump in pressure to the surface tension; the
equations of state (2.10); equation of heat conduction
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where A is the coefficient of thermal conductivity; M, coefficient of mass conductivity; «, heat-transfer coef-
ficient; &, mass transfer coefficient; u, displacement vector; the superscript s in Eq. (3.2) indicates the sym-
metric part, while the subscript Il indicates the fact that the surface component of the spatial tensor Vyu is
taken,

Thus, a closed system of equations is obtained, describing surface phenomena in elastically polarizing
solids, which, in particular, can be viewed as generalized boundary conditions for the spatial system of equa-
tions proposed in [3, 41.
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